SQL SERVER – Data Warehousing Interview Questions and Answers – Part 3

SQL Server Interview Questions and Answers
Print Book Available (207 Pages) | Sample Chapters

What are slowly changing dimensions (SCD)?
SCD is abbreviation of Slowly changing dimensions. SCD applies to cases where the attribute for a record varies over time.
There are three different types of SCD.
1) SCD1 : The new record replaces the original record. Only one record exist in database – current data.
2) SCD2 : A new record is added into the customer dimension table. Two records exist in database – current data and previous history data.
3) SCD3 : The original data is modified to include new data. One record exist in database – new information are attached with old information in same row.

What is hybrid slowly changing dimension?

Hybrid SCDs are combination of both SCD 1 and SCD 2. It may happen that in a table, some columns are important and we need to track changes for them i.e capture the historical data for them whereas in some columns even if the data changes, we don’t care.

What is BUS Schema?
BUS Schema is composed of a master suite of confirmed dimension and standardized definition if facts.

What is a Star Schema?
Star schema is a type of organizing the tables such that we can retrieve the result from the database quickly in the warehouse environment.

What Snow Flake Schema?
Snowflake Schema, each dimension has a primary dimension table, to which one or more additional dimensions can join. The primary dimension table is the only table that can join to the fact table.

Differences between star and snowflake schema?

Star schema – A single fact table with N number of Dimension, all dimensions will be linked directly with a fact table. This schema is de-normalized and results in simple join and less complex query as well as faster results.
Snow schema – Any dimensions with extended dimensions are know as snowflake schema, dimensions maybe interlinked or may have one to many relationship with other tables. This schema is normalized and results in complex join and very complex query as well as slower results.

What is Difference between ER Modeling and Dimensional Modeling?
ER modeling is used for normalizing the OLTP database design. Dimensional modeling is used for de-normalizing the ROLAP/MOLAP design.

What is degenerate dimension table?

If a table contains the values, which are neither dimension nor measures is called degenerate dimensions.

Why is Data Modeling Important?

Data modeling is probably the most labor intensive and time consuming part of the development process. The goal of the data model is to make sure that the all data objects required by the database are completely and accurately represented. Because the data model uses easily understood notations and natural language , it can be reviewed and verified as correct by the end-users.
In computer science, data modeling is the process of creating a data model by applying a data model theory to create a data model instance. A data model theory is a formal data model description. When data modelling, we are structuring and organizing data. These data structures are then typically implemented in a database management system. In addition to defining and organizing the data, data modeling will impose (implicitly or explicitly) constraints or limitations on the data placed within the structure.

Managing large quantities of structured and unstructured data is a primary function of information systems. Data models describe structured data for storage in data management systems such as relational databases. They typically do not describe unstructured data, such as word processing documents, email messages, pictures, digital audio, and video. (Reference : Wikipedia)

What is surrogate key?

Surrogate key is a substitution for the natural primary key. It is just a unique identifier or number for each row that can be used for the primary key to the table. The only requirement for a surrogate primary key is that it is unique for each row in the table. It is useful because the natural primary key can change and this makes updates more difficult.Surrogated keys are always integer or numeric.

What is Data Mart?
A data mart (DM) is a specialized version of a data warehouse (DW). Like data warehouses, data marts contain a snapshot of operational data that helps business people to strategize based on analyses of past trends and experiences. The key difference is that the creation of a data mart is predicated on a specific, predefined need for a certain grouping and configuration of select data. A data mart configuration emphasizes easy access to relevant information (Reference : Wiki). Data Marts are designed to help manager make strategic decisions about their business.

What is the difference between OLAP and data warehouse?

Datawarehouse is the place where the data is stored for analyzing where as OLAP is the process of analyzing the data,managing aggregations, partitioning information into cubes for in depth visualization.

What is a Cube and Linked Cube with reference to data warehouse?
Cubes are logical representation of multidimensional data.The edge of the cube contains dimension members and the body of the cube contains data values. The linking in cube ensures that the data in the cubes remain consistent.

What is junk dimension?

A number of very small dimensions might be lumped together to form a single dimension, a junk dimension – the attributes are not closely related. Grouping of Random flags and text Attributes in a dimension and moving them to a separate sub dimension is known as junk dimension.

What is snapshot with reference to data warehouse?
You can disconnect the report from the catalog to which it is attached by saving the report with a snapshot of the data.

What is active data warehousing?

An active data warehouse provides information that enables decision-makers within an organization to manage customer relationships nimbly, efficiently and proactively.

What is the difference between data warehousing and business intelligence?
Data warehousing deals with all aspects of managing the development, implementation and operation of a data warehouse or data mart including meta data management, data acquisition, data cleansing, data transformation, storage management, data distribution, data archiving, operational reporting, analytical reporting, security management, backup/recovery planning, etc. Business intelligence, on the other hand, is a set of software tools that enable an organization to analyze measurable aspects of their business such as sales performance, profitability, operational efficiency, effectiveness of marketing campaigns, market penetration among certain customer groups, cost trends, anomalies and exceptions, etc. Typically, the term “business intelligence” is used to encompass OLAP, data visualization, data mining and query/reporting tools. (Reference : Les Barbusinski)

Explain paradigm of Bill Inmon and Ralph Kimball.
Bill Inmon’s paradigm:
Data warehouse is one part of the overall business intelligence system. An enterprise has one data warehouse, and data marts source their information from the data warehouse. In the data warehouse, information is stored in 3rd normal form.

Ralph Kimball’s paradigm: Data warehouse is the conglomerate of all data marts within the enterprise. Information is always stored in the dimensional model.

Complete Series of SQL Server Interview Questions and Answers
SQL SERVER – Data Warehousing Interview Questions and Answers – Introduction
SQL SERVER – Data Warehousing Interview Questions and Answers – Part 1
SQL SERVER – Data Warehousing Interview Questions and Answers – Part 2
SQL SERVER – Data Warehousing Interview Questions and Answers – Part 3
SQL SERVER – Data Warehousing Interview Questions and Answers Complete List Download

Additional Series List Available to Download
SQL Server Interview Questions and Answers Complete List Download
SQL SERVER Database Coding Standards and Guidelines Complete List Download
Reference : Pinal Dave (http://blog.SQLAuthority.com)

About these ads

16 thoughts on “SQL SERVER – Data Warehousing Interview Questions and Answers – Part 3

  1. hi,
    This is a great collection of basics for DWDM!!
    But a bit of the tools like SSRS,SSIS and SSAS along ith the other might be the next step!!!!!!
    All the Best!!!

  2. Dave,

    You are doing a great job by providing information on very uaseful and latest issues and points.
    Your articles are always detailed and fully explanatery.

  3. Please add overview of question about MOLAP,ROLAP and HOLAP with proc and cons of each. It is very common question and rather debatable subject depending on OLAP tool.

    Thanks

  4. Hi, i problem with likend server SSAS 2005, when select openquery return this message error:

    Msg 7358, Level 16, State 1, Line 1
    Cannot execute the query. The OLE DB provider “MSOLAP” for linked server “MSCOMERCIAL” did not provide an appropriate interface to access the text, ntext, or image column “[MSOLAP].[Dim Tiempo].[Año].[Año].[MEMBER_CAPTION]“.

    MSCOMERCIAL=Linked Server SSAS 2005

    Please Help Me

  5. Hi Pinal,

    Its a great collection of all about the SQL Server. Thanks for serving the community.

    BTW, You mentioned about De-Generated Dimension as neither a dimension nor measures is called degenerate dimensions.

    But what I heard so far is, Denerated dimensions are the attributes derived from the Fact table which eventually formed as a dimension can be called as Generated Dimension. Can you confirm on this.

  6. “It is useful because the natural primary key can change and this makes updates more difficult”.

    In the Surrogate key definition above thing is mentioned that primary key value changes, but normally source primary key value dosent change.

  7. Hi Pinal – Could you please suggest some good book or link for depth understanding of DB data modelling. Appreciate your help. thanks

  8. Pingback: SQL SERVER – Weekly Series – Memory Lane – #039 | Journey to SQL Authority with Pinal Dave

  9. Pingback: SQL SERVER – Weekly Series – Memory Lane – #040 | Journey to SQL Authority with Pinal Dave

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s